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Abstract 

Photoplethysmography (PPG) has recently gained 

increasing interest for less obtrusive long-term 

cardiovascular monitoring. As for cardiac arrhythmia 

(CA), most research and available PPG devices have 

focused on the detection of atrial fibrillation (AF), the 

most common CA. However, other less studied CAs can 

induce errors in standard AF detectors.  

To address the PPG-based detection of both AF and 

non-AF CAs, we investigate novel features, extracted by 

pulse wave analysis (PWA), that provide insight into the 

morphology of individual pulses. Their discriminative 

power was evaluated based on the RELIEFF algorithm 

for feature selection, and we compared performance 

metrics for CA classification with and without PWA 

features. 

The classification accuracy using ridge regression was 

increased by 0.4%, from 75.6% to 76.0%, when using 

PWA features on top of temporal and spectral features. 

Likewise, the classification of non-AF CAs was globally 

improved. 

These results show the potential of extracting 

measures about individual pulse morphologies to improve 

detection of various CAs. 

 

 

1. Introduction 

The continuous monitoring of cardiovascular functions 

in everyday life is now facilitated by 

photoplethysmography (PPG) technology. Numerous 

commercial wearable devices, such as smart watches, 

integrate PPG technology and make continuous heart 

function monitoring widely available. In this context, 

consumers will benefit from this technology for the 

prevention and early detection of cardiac arrhythmias 

(CA) as this represents an alternative to current screening 

methods [1], such as ambulatory electrocardiography 

(ECG) devices. Ambulatory ECG recordings are usually 

limited to a maximum of 2 weeks, devices are 

cumbersome, and ECG electrodes can cause skin 

irritations. PPG-based devices are easier to use in 

everyday life, which is advantageous for the long-term 

monitoring of CAs. CAs can be intermittent and 

sometime asymptomatic in their early stage and difficult 

to diagnose when monitoring is performed only over a 

short period of time. 

Numerous studies investigated the potential to 

discriminate between normal sinus rhythm (SR) and atrial 

fibrillation (AF) from PPG signals recorded at the wrist, 

with very encouraging results [2]. However, the 

expression of other CAs can present characteristics that 

resemble those of AF and thus lead to wrong 

classification of pure SR-vs-AF detectors [3]. Only a few 

studies investigated the detection of AF against other 

CAs. Some of them make use of meaningful features 

often combined with machine learning classifiers to 

detect atrial flutter [4], ventricular tachycardia [5] or 

premature contractions [6]. Liu et al. [7] stand out by 

using a deep learning method to classify six different 

classes of CAs. All these studies have in common that 

they exploit the morphological characteristics of 

individual pulses. 

We propose to classify several types of CAs by using 

pulse wave analysis (PWA) [8] to characterize the 

morphology of individual pulses. To this end, PWA 

features were added to features based on inter-beat 

interval (IBI) timeseries traditionally used for rhythm 

analysis and most AF classifiers. We hypothesized that 

these novel PWA features will help improve AF detection 

performances in the presence of various types of CAs: 

premature atrial/ventricular contractions (PAC/PVC), 
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ventricular tachycardia (VT), atrial flutter (AFL), 

atrioventricular reentrant tachycardia (AVRT) and atrial 

tachycardia (AT). 

 

2. Material and Methods 

2.1. Data 

The dataset consisted of simultaneous ECG, PPG and 

acceleration measurements in 42 patients referred for 

catheter ablation at Lausanne University Hospital. The 

study was approved by the local ethics committee (CER-

VD, study number 305/15). The ECG was measured with 

a gold-standard 12-lead device and the PPG and 3-axis 

acceleration signals were acquired by a wrist bracelet 

developed at Swiss Center for Electronics and 

Microtechnology (CSEM). 

 

2.2. Preprocessing 

    PPG and ECG signals were first aligned based on 

detected pulse time series from both signals. PPG signals 

recorded at 25 Hz were processed by a second-order 

Butterworth bandpass filter between 0.5 and 12 Hz. 

Signals were segmented into 11'985 non-overlapping 

windows of 30 s. After isolating individual pulses for 

PWA feature extraction, PPG signal were resampled to 

100 Hz and the first and second derivatives were 

computed. 

 

2.3. Artefact rejection 

Windows were rejected based on acceleration signals, 

pulse detection frequency, and signal quality. 237 

windows were rejected from analysis based on the norm 

of the difference in acceleration between two successive 

samples: 𝒏 =  ‖𝒂(𝑡𝑗) − 𝒂(𝑡𝑗−1)‖
2
, where 𝒂(𝑡) is a 3-

dimensional acceleration signal. A window was rejected 

if the average of 𝒏 was above a threshold, 𝒏̅ > 0.3 𝐺. In 

addition, windows were excluded when the number of 

heartbeats was lower than 15 leading to the exclusion of 

2’011 and 1’428 windows due to too few heartbeats in the 

ECG and PPG, respectively. This procedure of exclusion 

often indicated ECG signals of very low quality and 

ensured that time domain features were computed based 

on a sufficient number of PPG pulses. In our dataset, a 

pressure cuff periodically corrupted measured PPG 

signals by obstructing blood flow in the arm. Therefore, 

additional 5’654 windows were rejected based on a 

perfusion index indicating the absence of pulsation in the 

PPG signal.  

Since one window can be rejected by more than one 

criterion, a total of 6’754 windows were rejected from 

analysis. 

 

2.4. Labels 

Individual ECG pulses were labeled by an expert. 

1'084 windows were rejected for reasons including 

missing labels, presence of cardiac pacing or noisy ECG 

measurements. This resulted in 4'147 windows remaining 

for analysis. As a window can contain different pulse 

labels [3], windows were labeled based on the most 

frequent pulse label, referred as the primary label. 

Windows containing more than 4 premature contractions 

have been given the primary label “frequent ectopic 

beats”. Windows were finally given one of the 3 class 

labels: SR (primary labels: “sinus rhythm”, “sinus 

bradycardia”, “sinus tachycardia”), AF (primary label: 

“atrial fibrillation”) or non-AF (primary labels: “atrial 

tachycardia”, “ventricular tachycardia”, bigeminy”, 

“atrial flutter”, “atrioventricular reentrant tachycardia”, 

“frequent ectopic beats”). 

 

2.5. Feature extraction 

Time domain features of heart rate variability (HRV) 

were computed based on IBI time series contained in 

windows. The following features are implemented as 

defined in [4]: Shannon entropy (ShEn), normalized root 

mean square of successive differences (nRMSSD), 

percentage of differences of successive IBIs that exceed 

40 or 70 ms (pNN40, pNN70), sample entropy (sampEn) 

and coefficients of sample entropy (CoSEn) of 

embedding dimensions 1 and 2, turning point ratio (TPR), 

minimum, maximum, mean and standard deviation (std) 

of IBI time series. In the frequency domain, Horjth 

mobility and complexity, spectral entropy (specEn) and 

spectral purity index (SPI) were extracted from PPG 

signals. 

 

 
 

Figure 1. Example of individual PPG pulse with 

associated PWA features (with AN for anacrotic notch) 

used for characterizing pulse morphology. Anacrotic 

notch is designated by a dashed line because it does not 

actually exist on this example pulse. 

 

PWA features were extracted from individual PPG 

pulses by detecting specific extrema in the signal and its 

derivatives. Figure 1 shows the pulse foot, the systolic 
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raise, the anacrotic notch (AN), the post-AN systolic 

peak, the dicrotic notch and the diastolic peak. Individual 

PPG pulses were normalized such that the timing of the 

pulse foot and its amplitude were equal to zero, and the 

maximum amplitude to one. PWA feature time series 

were then evaluated in the time domain similarly to IBI 

time series by computing their ShEn, nRMSSD, sampEn, 

CoSEn, TPR, mean and standard deviation. 

 

2.6. Feature Selection 

In total, 13 temporal features, 4 spectral features and 

140 PWA features were extracted. Because numerous 

additional PWA features might be irrelevant to the 

classification task, feature selection was applied. Features 

were first whitened, and missing values were replaced by 

zero because depending on the pulse morphology, certain 

PWA features can be absent. The Fisher score [9] was 

then applied (with a number of neighbors equal to 100) to 

determine the discriminative power of every feature. It 

allowed to limit the number of features by selecting the 

100 best ranked features. It also provided insights into the 

discriminative power of individual PWA features. 

 

2.7. Classification 

To choose the most appropriate type of classifier and 

optimize its hyperparameters, cross-validation was used. 

To this end, the dataset was divided into 5-folds so that 

all windows from a given patient were in the same fold 

and that different class labels were equally represented in 

every fold. Different classifiers were tested: ridge 

regression, random forest, K-nearest neighbors and SVM 

(with linear, RBF and sigmoid kernel). 

Classification performances were then evaluated by 

performing leave-one-group-out classification, that means 

training the chosen classifier on all patients except one 

that was used as the test set and repeating this for every 

patient. Accuracy, sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value 

(NPV) are reported for every class of arrhythmia and on 

average. 

 

3. Results  

3.1. Feature selection 

The scores assigned by the RELIEFF algorithm to the 

18 best scored features are shown in Figure 2. The best 

features are CoSEn and SampEn of embedding 

dimensions 1 and 2, pNN40, pNN70 and ShEn of IBI 

time series. Most traditional HRV features based on IBI 

timeseries are among the best ranked features, as well as 

spectral entropy (specEn), ranked 8th, which is based on 

the PPG signal. The best ranked PWA features are the 

TPR of the time of waves a and d (see [8]) and the 

systolic raise ranked 10th, 12th and 13th. The TPR of the 

amplitude of the dicrotic notch and the next pulse’s foot 

are ranked 14th and 17th. 

 

 
 

Figure 2. Feature score of the 15 best features ranked by 

the RELIEFF algorithm. 

 

3.2. Classification 

During the 5-fold cross-validation process, ridge 

regression with 𝛼 = 29 has been chosen as classification 

model without PWA features, and 𝛼 = 2 has been chosen 

while adding the 9 best ranked PWA features. Although 

the accuracies were slightly better with random forest 

than ridge regression models, the high variance of 

accuracies across folds led us to prefer the simplest 

model. 

 

Table 1. The classification accuracy (Acc), sensitivity 

(Sens), specificity (Spec), positive predicted value (PPV) 

and negative predictive value (NPV) of each class (SR, 

AF, non-AF) are reported in percent (%), both with and 

without PWA features. The reported average is balanced 

such that every class has equal weight. 

 

Class 

label 
PWA Acc Sens Spec PPV NPV 

SR 
no 81.9 79.4 87.9 94.0 64.4 

yes 82.1 79.6 87.8 93.9 64.6 

AF 
no 89.8 86.5 90.3 55.5 97.9 

yes 89.8 87.5 90.2 55.5 98.1 

non-AF 
no 79.5 52.7 85.2 42.9 89.5 

yes 80.0 53.1 85.7 44.0 89.6 

class 

average 

no 83.7 72.9 87.8 64.1 83.9 

yes 84.0 73.4 87.9 64.5 84.1 

 

When performing leave-one-group-out cross-
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validation on the entire dataset the global accuracy is 

75.6% without and 76.0% with PWA. 

In more details, Table 1 reports performance metrics 

for each class of arrhythmia. Notably, AF classification 

sensitivity increased from 86.5% to 87.5%, and 

specificity decreased by 0.1% but remains high (90.2%). 

The benefit of PWA features is clearer when classifying 

non-AF CAs since all metrics were improved. 

 

4. Discussion 

This study shows that additional information about the 

morphology of individual PPG pulses extracted with 

PWA is beneficial for the classification of non-AF CAs. 

PWA features also make AF detection more sensitive, 

while keeping specificity relatively high which is 

important to limit the number of false alarms. 

Nevertheless, the size of our dataset is limited, and a 

larger number of arrhythmic events is necessary to draw 

more significative conclusions. The high variability of 

accuracy scores when performing cross-validation 

suggested to prefer the leave-one-out-group method rather 

than the standard train-test split for the evaluation of 

performances. In addition, random forest classifiers 

showed better balanced accuracy scores on average 

during the hyperparameter tuning step, but the very high 

variability of scores across folds clearly indicated 

overfitting. This is the reason why ridge regression 

models have been preferred. 

Moreover, the extraction of PWA features might suffer 

from the 25 Hz sampling rate of the PPG signals. In our 

future work, PPG signals recorded at 100 Hz sampling 

rate will certainly favor PWA features over spectral 

features that are less affected by low sampling 

frequencies. 

Finally, non-AF CAs were grouped in a single class 

while their hemodynamic expression can be quite 

different. This has the advantage of limiting the 

complexity of the classification task, but it also reduces 

the contribution of this approach. In our future work, we 

plan to separate ventricular and supraventricular 

arrhythmias similarly to Liu et al. [7]. A second step 

could consist in detecting premature contractions pulse by 

pulse, similarly to Han et al. [6], instead of labelling a 

window as non-AF when it contains several premature 

contractions. 

 

5. Conclusion 

The classification performance of CAs via PPG has 

been marginally improved when numerous morphological 

features extracted by PWA were added to the  

 

 

 

classification model. More arrhythmic episodes and 

higher quality PPG signals are needed to investigate this 

approach in detail. 
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